An *Ab lnitio* **M.O. Study of 7-Silanorbornadiene and 7,7-Dimethyl-7-silanorbornadiene; Examples of Norbornadienes in which the** z **Orbitals interact largely through-bonds rather than through-space**

Michael N. Paddon-Rows* and Kenneth D. Jordanb

^a*Department of Organic Chemistry, University of New South Wales, P.O. Box I, Kensington, N.S. W. 2033, Australia* **^b***Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.*

It has been found that the π M.O.s of the fully optimized title molecules (HF/3-21G, C_{2v} symmetry constraint) follow an inverted sequence *[i.e.* the π_+ *(a₁)* level lies above the π_- *(b₁)* level]; a Natural Bond Orbital (N.B.O.) analysis reveals the origin of this inverted sequence.

Norbornadiene, **(la)** has become a paradigm for a molecule that exhibits dominant through-space (TS) orbital interactions within both π and π^* manifolds.¹⁻⁶ This is a consequence of the structurally enforced propinquity of the double bonds in (1a), due largely to the small value of the dihedral, ϕ , of 112°,⁷ associated with the six-membered ring. TS interactions result in the levels of the (fully delocalized) π and π^* canonical M.O.s (C.M.O.s) following the natural sequence, 4 *i.e.*, $E(\pi_-)$ $>E(\pi_+)$ and $E(\pi^*) > E(\pi^*)$ [where π_+ (π^*) represents the symmetric combination of π (π^*) basis orbitals with respect to the plane passing through C-1, C-7, and **C-4** of **(la),** and $\pi_{-} (\pi^*_{-})$ the corresponding antisymmetric combination].

This orbital sequence for **(la)** has been verified both theoretically^{1,3,4} and experimentally, by photoelectron spectroscopy,⁵ and by electron transmission (E.T.) spectroscopy.6

However, semi-empirical M.O. calculations3~4 on **(la)** also indicate the presence of through-bond (TB) interactions2.8 between the π orbitals which oppose the TS interactions and which, by themselves, would result in an inverted sequence⁴ of π levels [*i.e.*, $E(\pi_+) > E(\pi_-)$]. Although TS interactions are stronger than TB interactions in **(la),** it is of interest to inquire whether the relative importance of these interactions can be reversed in a suitably modified norbornadiene. We report that such is the case for 7-silanorbornadiene, **(lb),** and its 7,7-dimethyl analogue, **(1c)**. The structures for **(1a)**⁹—**(1c)** were fully optimized (within C_{2v} symmetry constraint) at the Hartree-Fock level using the STO-3G, 3-21G, and 3-21G(*) basis sets (the latter contains a set of d functions on the Si atom).¹⁰ The calculations were performed with the GAUS-**SIAN** 82 suite of programs.11 Optimized values of some salient geometric parameters, using the 3-21G basis set, for **(la)-(lc)** are given in Table 1, together with the energies of the canonical π and π^* M.O.s (*i.e.*, π_-, π_+ , π^* , and π^*) and the corresponding splitting energies, $\Delta = E(\pi_-) - E(\pi_+),$ and $\Delta^* = E(\pi^*) - E(\pi^*)$. A positive value for the splitting energy means that a natural sequence of orbitals obtains. Whereas Δ for (1a) is positive, thereby indicating a natural sequence of π levels in this molecule, it is negative for both **(lb)** and **(lc).** Calculations using the STO-3G and 3-21G(*) basis sets give values of Δ for (1a), (1b), and (1c) which are within 0.02 eV of the 3-21G result. This insensitivity of Δ to the basis set reinforces our belief that the level inversion calculated for $(1b)$ and $(1c)$ is genuine. However, the π^* levels for **(lb)** and **(lc)** still follow the natural sequence, and so TS interactions remain dominant here.

The reversal of the relative importance of TS and TB interactions in **(lb)** and **(lc)** , compared to **(la),** is attributed to a combination of geometric and electronic factors. The geometric factor derives from the rapid attenuation of the TS interactions with increasing value of ϕ , as a result of diminishing π, π orbital overlap.^{3,4,5c} Because TB effects are less sensitive to ϕ (the loss in overlap of the π M.O.s with the σ orbitals of the six-membered ring, with increasing ϕ , is compensated by a corresponding gain in overlap with the C1-X7-C4 bridge σ orbitals), there should be a value for ϕ for which TB interactions become dominant. MINDO/2 calculations predict this to occur in (1a) at $\phi \approx 116^{\circ}.$ ³ In the present study, the geometrical factor was explored by carrying out a series of single point 3-21G calculations on **(la)** and **(lb)** for different values of ϕ . Unlike the MINDO/2 result,³ the 3-21G

Table 1. HF/3-21G optimized geometrical parameters^a and energies^b (E) for the C_{2V} structures (1a)-(1c), together with the canonical π_{+} , π ₋, π ^{*}₊, and π ^{*} - M.O. energies^c and their splitting energies,^c Δ and Λ^* .

Parameter	$(1a)^d$	(1b)	(1c)
$C-1-X-7$	1.566	1.949	1.961
$C-1-C-2$	1.550	1.539	1.536
$C-2-C-3$	1.319	1.325	1.325
$C-2-C-6$	2.480	2.474	2.467
$C-8-Si$			1.911
$C-2-C-1-C-6$	106.2	107.0	106.9
$C-1-X-7-C-4$	92.0	79.1	78.4
$C-1-C-2-C-3$	107.5	112.1	112.1
$C-8-SI-C-9$			108.3
ø	114.0	120.4	120.3
$-E$	268.16187	517.91532	595.60065
$E(\pi_-)$	-8.72	-9.04	-8.83
$E(\pi_+)$	-9.76	-8.88	-8.62
Δ^e	1.04	-0.16	-0.21
$E(\pi^*)$	6.28	5.84	5.93
$E(\pi^*_{+})$	4.29	3.39f	4.23f
Δ^* e	1.99	2.45	1.69

^aBond lengths (A), bond and dihedral angles ("). **b** Energies in a.u. $(1 \text{ a.u.} = 2625.5 \text{ kJ/mol})$. *c* Orbital energies and splitting energies in eV (1 eV = 96.48 kJ/mol). **d** See also ref. 9. **c** $\Delta = E(\pi_{-}) - E(\pi_{+}); \Delta^*$ $E(E(\pi^*) - E(\pi^*)$. A negative sign for Δ means that the π_+ level lies above the π level.^f There is another orbital of b_2 symmetry *ca.* 2.4 eV higher in energy in both (1b) and (1c). Both b_2 orbitals result from strong mixing of π^* , with the C1-Si-C4 σ^* b_2 orbital.

 π_{-} and π_{+} levels for (1a) follow the natural sequence over the entire range of values of ϕ studied (114°–124°), whereas for **(1b)**, the calculated crossover value for ϕ is *ca.* 118°. Thus, the inverted sequence of π levels found for $(1b)$ and $(1c)$ is due in part to the somewhat larger equilibrium value of ϕ for these molecules, compared to $(\mathbf{1a})$; if the value of ϕ for $(\mathbf{1b})$ and $(\mathbf{1c})$ happened to be similar to that found for **(1)** (114"), a TS dominated Δ value of *ca.* 0.46 eV would then result. The fact that the crossover value of ϕ for $(1a)$ is much larger than that for **(lb)** suggests that TB interactions in **(la)** must be substantially weaker than in the latter molecule.

The electronic factor influences TB interactions and may be illustrated using the following simple argument. There are three symmetry-adapted semi-localized M.O.s $(\sigma-S.L.M.O.s)$ that are particularly relevant to TB coupling in the norbornyl system,⁴ and these are shown schematically by (2) — (4) . Arguments based on symmetry reveal that both **(2)** and **(3)** can mix with π_+ , and that **(4)** can mix with π_- . Both π_+ and $\pi_$ levels are thereby raised through this σ/π mixing, although the former should be more affected than the latter because there is no σ -S.L.M.O. counterpart to (3) that can mix with π ₋. Thus, TB interactions in **(l),** by themselves, lead to an inverted sequence of π levels. Although replacement of C-7 in (1) by Si should have little effect on the energies and shapes of **(2)** and **(4)** (X-7 makes no contribution to these orbitals), the self-energy of orbital **(3)** should be raised by such substitution $(i.e., Si is more electropositive than C)$. Consequently, because of the narrower energy gap that obtains between π_+ and the a-S.L.M.O. **(3)** in **(lb),** relative to **(la),** TB coupling with π_+ is larger in (1b), compared to (1a). Net TB interactions, *i.e.*, the difference between the π_{-} and π_{+} levels resulting exclusively from TB effects, should, therefore, be larger for **(lb)** [and **(lc)]** than for **(la).**

The above reasoning can be quantified by dissecting the net orbital interactions into TS and TB components along the lines suggested by Heilbronner and Schmelzer.4 The Weinhold natural bond orbital $(N.B.O.)$ ^{12,13} procedure was used to

Figure 1. N.B.O.^{12,13} interaction diagrams for (1a) and (1b) for $\phi = 120^\circ$. NB π is the π NBO; ${}^{SL}\pi_+$ and ${}^{SL}\pi_-$ are the semi-localized symmetry-adapted combination of the two NB_n basis orbitals, and Δ_{TS} is the TS interaction energy; π_+ and π_+ are the final (fully delocalized) C.M.O.s, with Δ the net splitting energy from combined TS and TB interactions. Γ_+ and Γ_- are the total TB contributions to π_+ and π_- , respectively.

obtain the localized π basis levels (NB π) in (1a) and (1b), together with the pure TS splitting energies, Δ_{TS} between the two NB π basis orbitals in each molecule. The π orbitals resulting from these TS interactions are the π -S.L.M.O.s, SL_{π_+} and SL_{π_-} . The energy difference between SL_{π_+} and SL_{π_-} and the respective final canonical orbitals, π_+ and π_- , gives the total TB contribution (Γ_+ and Γ_-) to each C.M.O. In this way, the two interaction diagrams for **(la)** and **(lb)** were constructed (Figure 1) for ϕ set equal to that found for optimized (1b) $(i.e., 120^{\circ})$. As expected, Δ_{TS} is comparable for both molecules and is substantially larger than the net splitting energies, Δ . In complete agrement with the above qualitative reasoning, Γ_{-} is considerably smaller than Γ_{+} for both $(1a)$ and $(1b)$, and, more importantly, Γ_+ for $(1b)$ is almost 1 eV larger than that for (1a). It is this large value of Γ_+ for $(1b)$ that is primarily responsible for the π level inversion in this molecule. We find that, although Γ_+ and Γ_- remain unaltered, Δ_{TS} for (1b) rapidly increases with decreasing ϕ until, for ϕ < 118°, Δ_{TS} > (Γ_{+} - Γ_{-}) and TS effects now dominate. For $(1a)$, Γ_+ is not quite large enough to cause level inversion, even for $\phi = 120^{\circ}$; we predict this to occur for $\phi >$ 130".

Interestingly, the π^* levels in **(1b)** and **(1c)** follow the natural sequence, even if ϕ is increased to 124°. Presumably, TB coupling of π^* with the σ relays is not strong enough to overcome the TS interactions. This is understandable when it is recognized that TS interactions may be larger between π^* orbitals than between π orbitals (the former are more diffuse and therefore overlap better with each other), and also that σ/π^* TB should be weaker than σ/π interactions (the σ/π^* energy gap is greater than the σ/π energy gap).

Our predictions are subject to experimental verification. Since analogues of **(lc)** are known and are reasonably stable, **l4** the synthesis of **(lc)** should be achievable and constitute a worthwhile goal.

We thank the Australian Research Grants Scheme and the **N.S.F.** for continuing support. Some of the calculations were carried out on the Cray X-MPl48 **at** the Pittsburgh Supercomputing Centre.

Received, 27th May 1988; Corn. 8102126K

References

- 1 R. Hoffmann, E. Heilbronner, and R. Gleiter, J. *Am. Chem. SOC.,* 1970, 92, 706.
- 2 R. Hoffmann, *Acc. Chem. Res.,* 1971, **4,** 1.
- 3 M. J. *S.* Dewar and J. **S.** Wasson, *J. Am. Chem. SOC.,* 1970, 92, 3566.
- 4 E. Heilbronner and A. Schmelzer, *Helv. Chim.* **Acta,** 1975, **58,** 936.
- 5 (a) P. Bischof, J. A. Hashmall, E. Heilbronner, and V. Hornung, *Helv. Chim. Acta,* 1969, 52, 1745; (b) E. Heilbronner and H.-D. Martin, *Helv. Chim. Acta,* 1972, **55,** 1490; (c) E. Heilbronner, *Israel J. Chem.,* 1972, **10,** 143.
- 6 K. D. Jordan, J. A. Michejda, and P. D. Burrow, *Chem. Phys. Lett.,* 1976, **42,** 227.
- 7 (a) G. Dallinga and L. H. Toneman, *Rec. Trav. Chim. Pays-Bas,* 1968, **87,** 805; (b) A. Yokozeki, and A. Kuchitsu, *Bull. Chem. SOC. Jpn.,* 1971, **44,** 2356.
- 8 (a) R. Hoffmann, A. Imamura, and W. J. Hehre, *J. Am. Chem. SOC.,* 1968, **90,** 1499; (b) M. N. Paddon-Row, *Acc. Chem. Res.,* 1982, **15,** 245.
- 9 **C.** R. Castro, R. Butler, A. Rauk, and H. Wieser, J. *Mol. Struct.,* 1987, **152,** 241.
- 10 W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. **A.** Pople, and J. **S.** Binkley, J. *Am. Chem. SOC.,* 1982, **104,** 5039.
- 11 J. **S.** Binkley, M. J. Frisch, D. J. DeFrees, K. Raghavachari, R. **A.** Whiteside, H. B. Schlegel, E. M. Fluder, R. Seeger, and J. A. Pople, GAUSSIAN 82, Carnegie-Mellon University, Pittsburgh, **PA** 15213, U.S.A.
- 12 (a) J. P. Foster and F. Weinhold, *J. Am. Chem. Soc.*, 1980, 102, 7211 ; (b) A. E. Reed, R. B. Weinstock, and F. Weinhold, J. *Chem. Phys.,* 1985, **83,** 735; (c) A. E. Reed and F. Weinhold, *ibid.,* 1985,83, 1736; (d) J. **E.** Carpenter and F. Weinhold, J. *Am. Chem.* **SOC.,** 1988, **110,** 368.
- 13 A. E. Reed and F. Weinhold, *Q.C. P. E. Bull.,* 1985, *5,* 141.
- 14 (a) A. Laporterie, J. Dubac, P. Mazerolles, and M. Lesbre, *Tetrahedron Lett.,* 1971,4653; (b) T. J. Barton, J. L. Witiak, and C. L. McIntosh, J. *Am. Chem. SOC.,* 1972, 94, 6229; (c) R. Maruca, R. Fischer, L. Roseman, and **A.** Gehring, J. *Organomet. Chem.,* 1973,49,139; (d) R. Balasubramanian and M. **Y.** George, *ibid.,* 1975, **85,** 131; (e) B. Mayer and W. P. Neumann, *Tetrahedron Lett.,* 1980, 21, 4887; (f) T. **J.** Barton, W. F. Goure, J. **L.** Witiak, and W. D. Wulff, J. *Organomet. Chem.,* 1982, 225, 87; (g) H. Appler, L. W. Gross, B. Mayer, and W. P. Neumann, *ibid.,* 1985, 292, 9; (h) **A.** Marinetti-Migrani, and R. West, *Organometallics,* 1987, **6,** 141.